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This paper discusses the sound generated when an inhomogeneity in density is 
convected in a low Mach number steady flow through a contraction in a duct of 
infinite extent, and also when the inhomogeneity exhausts through a nozzle 
into free space. The analyses of Candel(l972) and Marble (1973) for the case of 
duct flow were based on a frequency decomposition of the incident inhomogeneity 
and cannot adequately deal with sharp-fronted inhomogeneities and entropy 
spots. However, the practical difficulties of this earlier work can be avoided at 
low flow Mach numbers by conducting the analysis in terms of an approximate 
expression for the acoustic Green’s function in the manner described by Howe 
(1975). This method also permits a considerable extension of the range of the 
earlier investigations to the determination of the sound generated when the 
inhomogeneity is swept out of a nozzle orifice into free space. It is shown that 
the acoustic pressure perturbations developed in a duct at  a contraction are in 
general proportional to the fractional difference between the density of the 
inhomogeneity and that of the mean flow times a typical mean flow pressure level, 
and are due principally to the fluctuation in thrust accompanying the passage of 
the inhomogeneity through the region of variable pressure gradient. The pressure 
waves generated at a nozzle orifice and radiated into free space are O(MJ smaller, 
where M, is a mean flow Mach number based on the speed of sound in the jet. 

1. Introduction 
The recent work of Candel(1972), Marble (1 973) and Cumpsty & Marble (1 974) 

has demonstrated that sound is generated when a nominally silent fluid inhomo- 
geneity, such asanentropy spot, is convected througharegion of non-uniform flow. 
This is because the inhomogeneity cannot negotiate a path through the existing 
non-uniform mean flow without the intervention of a compensating pressure 
perturbation. This perturbation manifests itself in the form of an acoustic pulse. 

The noise produced by this mechanism has been analysed by first decomposing 
the incident inhomogeneity into a Fourier distribution of entropy waves. The 
interaction of each component with the non-uniformity in the flow, e.g. with a, 
sudden or gradual change in duct cross-section, is then worked out in detail 
and the results can, in principle, be superposed to yield the effect of a specific 
inhomogeneity. When the contraction in the duct is treated as a compact element 
(Marble 1973), such that its length and transit time are small compared with the 
wavelength and wave period, this theory is only capable of dealing with diffuse 
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entropy inhomogeneities in which temperature and density variations occur 
over distances greater than the scale of the contraction region. The problem of 
an incident entropy spot has been considered by Candel(l972) and Marble (1973) 
by means of a one-dimensional model in which the mean flow characteristics are 
functions of a single axial co-ordinate. Actually both authors assumed that the 
variation in mean flow velocity is a linear function of position. However, their 
analysis is again based on a frequency decomposition of the incident inhomo- 
geneity and the ensuing mathematical complications are such as to inhibit a 
detailed investigation other than by way of numerical computation. The diffi- 
culty arises because the method of Fourier decomposing the incident entropy 
spot is particularly inefficient for this type of problem. The dominant frequency 
of the emitted sound is determined essentially by the time taken by the spot to 
convect through the region of non-uniform flow, and the summation of the 
Fourier components constituting this sound must be undertaken with more 
precision than is generally possible by numerical computation in order that the 
delicate phase cancellation of the high frequency components present in the 
incident entropy spot can be achieved. Thus it is not possible by this means to 
obtain analytical expressions which enable one to chart the progress of an 
individual entropy inhomogeneity through a nozzle contraction, to elicit in 
detail the physical mechanisms responsible for the generation of sound, nor to 
predict the wave form of the emitted sound. 

An approach proposed by Ffowcs Williams (1974)) on the other hand, js 
designed specifically to expose the noise source mechanisms that are possible in 
a region of non-uniform flow. Indeed he showed that the free-space far-field 
acoustic pressure perturbation p induced by a compact source region V located 
near the origin x = 0 can be expressed in the form 

where p, co and Tii are respectively the fluid density, the speed of sound in 
free space and the Lighthill stress tensor (Ffowcs Williams 1974, equation (3)) 
and the integral is evaluated at  the retarded time t- lx-yI/co.  The Mach 
number M, is equal to U,/co, where U, is the speed at  which the fluid element 
approaches the observation point x. 

The material derivatives D/Dt in the result (1.1) serve to emphasize that it 
is time variations relative to a Lagrangian reference frame convecting with the 
fluid which actually determine the characteristics of the radiation. A nominally 
'silent' source is one for which the Lighthill tensor T i j  is constant or changes 
very slowly in the source-fixed frame. Equation (1.1) then predicts that the 
radiated pressure levels are negligible unless the source, which is attached to a 
fluid partide, is itseIf accelerating, e.g. through a region of non-uniform mean 
flow, in which case the dominant radiation may be termed acoustic bremsstrahlung, 
and for low convection Mach numbers is given by 
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In particular, the case of an entropy spot is included in a model where 

Zj 2: c : ( P ~ - P )  Jijj (1.3) 

p being the density of a particular fluid particle; (1.2) then gives 

(1.4) 

the momentum equation pDu,lDt = - 8plaxi having been invoked to simplify 
further its integrand. 

In this form the bremsstrahlung is seen to be proportional to ( p - p o ) N o U 2 ,  
where U is a typical convection speed and lMo = U/co. The noise source mechanism 
is the interaction between the density inhomogeneity p -po and the mean flow 
pressure gradient, a source term which has already been identified by Morfey 
(1973) by an alternative procedure. 

The general free-space result (1.1) obtained by Ffowcs Williams is not directly 
applicable to duct and nozzle flow problems because of the added complexity 
introduced by the presence of dipole source terms distributed over the walls of 
the duct and the nozzle lip. However, in the case of low Mach number flows, it 
is possible to avoid the analyticd difficulties experienced by Candel (1 972) and 
Marble (1973) in their treatment of the variable duct, by first deriving an approxi- 
mate expression for the Green’s function describing the generation of sound 
within the variable-geometry duct or nozzle. A procedure for obtaining such 
Green’s functions has been described by Howe (1975), and this enables one to 
construct an elegant analytical theory for the Candel-Marble problem of the 
sound generated during the convection through a contraction in a duct of an 
entropy inhomogeneity, and also to extend the range of the investigation to 
determine the sound generated when the inhomogeneity is swept out of a nozzle 
orifice into free space. This theory is described below. 

In $2 attention is focused on the problem of determining the sound generated 
when an inhomogeneity is convected through a contraction in an infinitely 
long duct, i.e. on the case of flow interaction far upstream of a nozzle orifice. 
It is convenient to consider separately two extreme possibilities. The first is that 
of a slug of material convected a t  low Mach number through the contraction. 
A pressure perturbation is developed across the slug by precisely the same 
mechanism as that described above in (1.4), the radiated pressure level being 
proportional to the total mean pressure drop across the slug and to the fractional 
density difference between the slug and the ambient fluid. This is the dominant 
acoustic source mechanism. The contribution to the sound field produced as a 
result of the differential change in the volume of the slug as it convects down the 
mean flow pressure gradient is smaller than the bremsstrahlung term by a factor 
of the order of the Mach number of the mean flow. 

A small spherical pellet which is convected along the duct behaves as a dipole 
source of acoustic radiation during the period in which it is slipping through the 
fluid. This occurs where the flow is non-uniform, and the perturbation pressure 
levels developed are proportional to the pellet velocity and the slip velocity 
together with factors characterizing the geometry of the mean flow. 
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FIGURE 1. Hard-walled duct. The flow inhomogeneity is bounded by a control surface c 
which lies just within the region of validity of the wave equation (2.1). 

In both of t,hese model problems the acoustic pressure fluctuations are typically 
of order po P. At a nozzle orifice, however, the sound radiated into free space 
scales on the dimensionless source frequency times pU2, and that frequency is 
of order M,, the characteristic flow Mach number (93)) so that the free-space 
radiation is O(pMo Uz).  Further calculation ( §  4) of the respective cases of a slug 
and a pellet emerging from a nozzle orifice into free space confirms this general 
prediction regarding the overall free-space sound pressure level. 

2. Convection through a duct contraction 
Consider the situation depicted in figure I. A hard-walled duct of infinite 

length contains fluid of density po in a state of steady flow. The flow, which is in 
the +x, direction, accelerates through a contraction of scale L over which the 
uniform cross-sectional area of the duct reduces from A ,  to A ,  and the mean 
flow velocity increases from U, to U,. The mean flow Mach number is assumed 
to be sufficiently small that the steady flow may be regarded as incompressible, 
with A, U, = A,  U,. 

An inhomogeneity present in the flow will be accelerated through the con- 
traction in a time of order LIU, resulting in the emission of sound waves of wave- 
length O(L/M) ,  M being the characteristic flow Mach number. For sufficiently 
small values of M the wavelength will greatly exceed the contraction scale L, 
and the problem of determining the radiated sound pressure levels can then 
be analysed by means of the low Mach number theory developed in Howe 
(1975). 

We assume that the steady flow is irrotational. Let r$ denote the perturbation 
velocity potential produced by the inhomogeneity. Then for points exterior to 
the inhomogeneity 4 satisfies the convected wave equation 

provided that M 2  < 1. In this result the steady flow velocity U is variable only 
over the region of the contraction, and U --f (U,, 0, 0)) (U,) 0,O) as x1 -f 

Next enclose the flow inhomogeneity within a closed surface C lying just 
within the region of validity of (2.1), and defined by f(x,t) = 0 (see figure 1) .  
Assume that f > 0 for points of the flow outside C and f < 0 within C, and in 
the manner of Ffowcs Williams & Hawkings (1969)) set $ = H ( f )  4, where H 

00. 
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is the Heaviside unit function. Multiply (2.1) by H ( f )  and rearrange to obtain 

609 

This is an equation for $ which is formally valid throughout the whole of 
the duct, with 9 = qi for points exterior to the surface Z. If the source terms on 
the right-hand side are known, (2.2) can be solved for 9 as soon as the Green’s 
function for the duct is specified. This is the solution of the equation 

i a  
3 (at + u . &)“G - V2G = S(t - 7 )  S(X - y), (2.3) 

whose normal derivative vanishes on the walls of the duct and which satisfies 
the radiation condition a t  infinity. 

The form of G(x, y; t ,  r )  appropriate to the low frequency source distributions 
under consideration can be obtained by means of a straightforward application 
of the method described by Howe (1975), and outlined in the appendix. Actually 
we shall confine our attention to the determination of the sound radiated down- 
stream of the Contraction (zl > 0). In  this case we have 

where Nl = U&,, M, = U2/co and #*(x) is a harmonic function describing irro- 
tational flow through the contraction, and normalized such that 

$*+xl as x,++cQ. 

It is assumed in (2.4) that y is located in the region of the contraction and that 
the observation point x is far downstream. 

Let us first consider the case of the downstream radiation produced as a 
result of the passage of a slug of material of density p through the contraction, 
where (p -po)/po is small (see figure 2). For sufficiently small flow Mach numbers 
the acoustic wavelength will greatly exceed the dimensions of the slug, and the 
flow in the vicinity of the contraction will be essentially incompressible. 

Actually for this particular problem it is convenient to work in terms of 
@fat rather than #, in which case the equation analogous to (2.2) is 

Here we have discarded the material-derivative source terms which appear on 
the right-hand side of (2.2), since under the present circumstances they are 
O ( M 2 )  smaller than the terms retained on the right of (2.5). 

Since the flow regime is effectively incompressible in the region of the con- 
traction, we can set 

where U2+u(t) is the uniform flow velocity downstream at distances large 
compared with the contraction scale L but small compared with the acoustic 

39 F L M  70 

$ = rn(t)+[U,+u(t)]$*(x)+ ..., (2.6) 
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FIGURE 2. A slug of material of density p is convected by the mean flow 
through the contraction in the duct. 

wavelength. The purely time-dependent contribution m(t) is discontinuous 
across the end faces of the slug, and this is the dominant source of the acoustic 
radiation. 

The downstream radiation from the slug can be estimated by substituting 
(2.6) into the source terms on the right-hand side of (2.5) and then convoluting 
with the Green’s function (2.4). Consider first the contribution from the dipole 
source term, viz., 

where the effective differences in retarded times over the length of the slug have 
been neglected. Neglecting also the variations in $ ( y , ~ )  over the end faces of 
the slug we have 

where [$I,” is to be evaluated at  points just outside the slug at  the stations A 
and B shown in figure 2. 

Consider next the monopole term 

-c0  ad i3H H t - 7 -  +- ’*(’) )d3ydr. (2.9) 
’m = A,+A, 1 ( co( I + M,) A , co( 1 + Ml) 

Using (2.6) and observing that V2$* = 0 we have 

(2.10) 

Hence 
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Now in the absence of the viscous generation of vorticity, Bernoulli’s equation 
assumes the form 

(2.12) 

in each region of uniform mean density, from which, availing ourselves of the 
continuity of pressure and of velocity (assumed to be normal to the end faces of 
the slug), we find 

V{$ + Q vz + J dplp} = 0 

(2.13) 

In the first approximation p ,  and p ,  may be replaced by their values in the 
absence of the slug, so that, noting further that the perturbation pressure p 
downstream of the contraction is related to @ by 

P 21 -Po(1 +Mz)-l@, 
we finally deduce that 

(2.14) 

(2.15) 

where T = t - x,/co( 1 + M,) . 

density ratio and of the mean flow pressure drop across the slug. Since 
This result characterizes the respective effects of the flow, area change, 

PA - PB ap/ax, 

where 1 is of the order of the length of the slug, it is apparent that the source of 
the acoustic radiation can be identified with the bremsstrahlung dipole source 
term arising from the interaction of the density inhomogeneity and the mean 
flow pressure gradient in the corresponding free-space result (1.4). This conclu- 
sion is borne out by detailed calculation along the above lines in which the 
free-space Green’s function is used. 

Actually acoustic emission may also occur as a result of the volumetric change 
as the slug convects into a region of lower ambient pressure. The acoustic response 
is a consequence of this change in volume being different from the change in the 
volume of a corresponding hypothetical slug made up of ambient fluid matter. 
In  order to estimate the magnitude of the sound generated and to compare it 
with the dipole term isolatedin (2.15), we first note that, if a2 denotes the con- 
vective wave operator on the left of (2.1)) then the difference between the response 
of the material of the slug and that of the ambient fluid arises because mzd + 0 
within the slug. Indeed, if c is the sound speed within the slug, and 0; the 
corresponding wave operator, then for points within the material of the slug 

n:4 = 0. (2.16) 

By means of the Heaviside function H ( f )  introduced above we can formally 
write 

0 2 4  = (1 - H )  0 2 4  = a{( 1 - H )  o”}/at, (2.17) 

since nzq4 = 0 onf(x,t)  = 0, i.e. on the control surface C. The right-hand side 
of this equation is non-zero within C €or two reasons. First, 4 is discontinuous 
across the boundaries of the slug, giving rise to surface distributions of acoustic 

39-2 
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source terms which have already been examined above. Second, within the 
volume of the slug m2q5 +- 0, but 0,q52 = 0. 

Thus (2.17) may be set in the more explicit form 

(2.18) 

where f(x, t )  = 0 now defines the boundary of the slug and [q5] denotes the 
jump in the value of q5 in passing out of the slug. Noting that within the slug 
V2q5 = - (pc2)-l DplDt, the contribution, pm say, to the downstream radiation 
from the second term on the right of (2.18) is obtained by convolution with the 
Green's function (2.4) : 

p,& ( A  a A h ( 1 - z )  [Mo.VpIT, 
1+  2 ) P  

(2.19) 

where A is the volume of the slug and T = t - ~ & ~ ( l  +&I,). 
The surface term in (2.18) produces the dipole radiation field given by 

(2.15). But when account is taken of the small difference in the retarded times 
of pa and p B  there is an additional contribution p D  to (2.15) which is of the 
same order as pm, viz. 

* ( 1  -$) [M,.Vp],. 
pD = &+A,) 

(2.20) 

Combining (2.19) and (2.20) i t  follows that the downstream radiation arising 
from the differential volumetric response of the slug is given by 

(2.21) 

Let us now consider two extreme applications of this result. The first is to 
the case of an entropy inhomogeneity in which the slug actually consists of a 
portion of fluid within which the temperature differs from that of the steady 
mean flow. The ratio of the specific heats may then be assumed to be constant 
throughout the whole of the fluid, so that pc2 = pot$ This is therefore a case 
in which the compressibility of the slug is the same as that of the ambient 
flow, and no sound is generated by this mechanism. 

The second application of the volumetric source term of (2.18) is to the case in 
which the change in the volume of the slug as it convects through the contraction 
in the duct is guaranteed to be large. This occurs, for example, when the slug 
consists of a 'spongy' mass of gas convected in liquid, typified by an air bubble 
in a domestic hose. In  that case, the compressibility of the air being much greater 
than that of water, (2.21) implies a downstream pressure perturbation whose 
order of magnitude is given by 

(2.22) 

where, as before Mo = U/c,. This result is O(Mo) relative to the dipole inter- 
action term (2.15), but contains the large factor poci/pc2, which in the case of an 
air bubble in water is of order lo5. Comparison with the dipole term indicates 
that (2.22) is significant provided that 

M, = u/co 2 (c/co)2. 
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FIGURE 3. A small spherical pellet emits sound as it accelerates 
through the contraction in the duct. 

The ratio on the right-hand side is about 0.05 for an air bubble in water, and 
the condition then corresponds to flow speeds greater than about 75 m 8-1, 
which is much larger than those occurring in a domestic hose. 

We now turn our attention to the problem of determining the pressure waves 
developed during the convection of a spherical pellet through the contraction 
(figure 3). At low relative flow Mach numbers the disturbed flow in the region of 
the pellet is incompressible. Thus, if the pellet is sufficiently small and has 
velocity of translationv and, as before, U(x) denotes the steady ambient velocity 
field, then the perturbation potential in the vicinity of the pellet is given by 

In this equation a is the radius of the pellet, xo(t) the location of its centre at 
time t, and r = Ix - x,(t) I. The wave equation analogous to (2 .5)  is then 

where the control surface 2 may be assumed to coincide with the surface of the 
pellet. 

It is convenient to adopt the following procedure. Rather than solving (2.24) 
by direct convolution of the right-hand side with the Green’s function (2.4), we 
first simplify the source terms by means of a formal expansion in powers of the 
radius u of the pellet. This is equivalent to an expansion of the actual solution 
in powers of a compactness parameter Mu/& where M is the characteristic flow 
Mach number and L is the length scale of the contraction. To do this we introduce 
a ‘test’ function f ( x ) ,  say. Then the volume integral ID of the product of the 
dipole source term and the test function is 

(2.25) 

Expand a f laxj in powers of x< - xoi, i.e. about the centre of the sphere, and 
retain only the first non-trivial term. Using the expression (2.23) we readily 
deduce that in the first approximation 

ID 2~ - @ra3(V - U) . a f /ax, (2.26) 

from which it follows that the dipole source ‘strength’ is represented by 

(2.27) 
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A similar calculation applied to the monopole term leads to 

a#D 8H 47ra3 
axj axj - 3 

- div {(V - U) S[X - xo(t)]}. (2.28) 

Hence the principal net effect of the pellet is that of a convected dipole source, 
and the corresponding acoustic perturbation potential 4 is determined by 

2 
(2.29) 

i a  2 (at + U .:) q5 - Vzq5 = 2ra3 div ((V - U) S[x - x&)]}. 

Convolution of the right-hand side of this equation with the Green’s function 
(2.4) is now trivial, and yields for the downstream perturbation potential 

(2.30) 

evaluated at x = xo(t - x,/co( I + M2)).  
The acoustic pressure perturbation is related to q5 by 

(2.31) 

from which it follows that 

evaluated at  x = xo(t - x,/co( 1 + M2)) .  
Again, therefore, the radiation pressure field is proportional to the square of 

a typical flow velocity, sound being emitted only during the period in which the 
pellet is slipping through the ambient flow field. 

3. Free-space radiation 
In  $ 2  the acoustic field generated by the passage of a density inhomogeneity 

through a contraction in a duct was calculated on the assumption that the duct 
was of infinite extent in both directions. We now relate this to the radiation 
emitted into free space at  a nozzle termination, assumed to be located far down- 
stream of the contraction at  which the sound originates. 

The simple order-of-magnitude calculation, which is all that is really required 
here, is classical and is given in various forms in Rayleigh (1945, chap. 16). 
Here we neglect the effect of the low Mach number flow, and consider a long 
plane wave of potential #I ( t  - x,/co) incident on the nozzle exit from the interior 
(see figure 4). The potential of the field radiated into free space is given approxi- 
mately by 
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FIGURE 4. Scattering of a long wave incident on the nozzle from 
the interior of the duct. 

where r is the observation distance from the orifice, 1 is determined by the exact 
details of the nozzle construction, but is a length whose magnitude is of the 
order of half the orifice radius, and c, is the free-space sound speed. 

The far-field pressure perturbation is 

Now the considerations of $ 2  indicate that in both of the extreme cases of a 
slug and of a pellet convecting in the flow 

a+,/at = o( u2), (3.3) 

and since the time scale of the acoustic disturbance is O(L/U) ,  this implies that 
the free-space radiated pressure field is typically of order 

(3.4) 

Note that the Mach number dependence of this result is with respect to the 
speed of sound within the duct flow. 

In particular if d is the cross-sectional area of the duct upstream of the 
nozzle but, as in figure I, downstream of the duct contraction considered in 
$2, and if it is assumed that Z2 = d/47r, then the dipole radiation (2.15) within 
the duct gives rise to free-space perturbation pressures of the order 

This result will be considered further in the next section. 

4. Generation of sound at the nozzle orifice 
The slug and pellet calculations of $ 2  can be repeated for the case of a termi- 

nating duct, although it is difficult to take direct account of the vortex shear 
layer which separates the nozzle jet flow from the ambient atmosphere. How- 
ever, in the long-wavelength approximation under consideration, it might be 
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FIGURE 5. Acoustic radiation is emitted as pellet is swept oub 
of the nozzle by the jet flow. 

anticipated that the neglect of shear-layer effects will not lead to substantial 
deviations of the solution of such a simplified problem from that of the actual 
physical problem which it is desired to model. 

Consider the typical axisymmetric nozzle configuration illustrated in figure 
6, which has uniform cross-sectional area d far upstream of the orifice. For 
sufficiently low exhaust Mach numbers the Green’s function for the nozzle can 
be determined in the manner already outlined in the appendix in connexion 
with the infinite duct. This is just the low frequency approximation to the exact 
Green’s function, and for an observation point x in free space and many wave- 
lengths from the orifice, it can be set in the form 

where the origin of the co-ordinates is located in the centre of the orifice and c, 
is the speed of sound in the exterior fluid. 

The functions F(y) and K(y) are harmonic and have the dimensions of length. 
They characterize respectively the monopole and dipole responses of the nozzle, 
which are of equal importance at low frequencies, and satisfy the normal-velocity 
condition 

on the nozzle wall, n being the unit normal illustrated in figure 5.  As IyI -tco in 
free space, K 3 y, F -+ 0 and (4.1) reduces to the usual free-space Green’s function 
in which Rayleigh scattering by the nozzle is neglected. As IyI +co within the 
duct, K-tconstant, P-t (c,/co) yl, where co is the speed of sound in the jet flow, 
and we recover the Green’s function for a low frequency source located far up- 
stream of the orifice. Further details of the functions F and K for the particular 
case of a circular cylindrical nozzle are given by Leppington (1971). 

Consider first the case of a spherical pellet exhausting through the nozzle. 
Using the dipole source term (2.29) we obtain the perturbation potential in free 
space: 

n . V ( F , K )  = 0 (4.2) 
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FIGURE 6. Illustrating the idealized model used to determine the acoustic radiation 
generated during the ejection of a slug from a nozzle. 

i.e. approximately 

Hence the scattered acoustic pressure is given by 

(4.5) 

evaluated at  the retarded position y = xo(t- Ixl/cs). It is clear from this result 
that the functions P and K specify the monopole and dipole characteristics of 
the radiation, which in terms of the order of magnitude is expressed by 

where M, II Ulc, and 1 is a length of the order of the nozzle radius. 
Next consider the case of a slug exhausting a t  low Mach number from the 

nozzle exit (figure 6). We shall assume that the material of the slug lies just 
within the jet flow in order to avoid the difficulty of taking account of the shear 
layer between the slug and the ambient atmosphere. In the absence of the slug 
conditions are steady even in the presence of the vortex layer, which modifies 
only slightly ( 1 )  the radiation properties of the long-wavelength sound. 

As in $2 the velocity potential within the nozzle region can be represented by 

$ = m(t) + [u, +w3 #*(x), (4- 7 1 
where m(t) is discontinuous across the boundaries of the slug. Surround the 
slug by a control surface C, and in the low Mach number approximation retain 
only the space-gradient source terms of (2.5). 

Thus, in the notation of $2 we have 
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where 4 is to be evaluated just outside the boundaries of the slug. Observe that 
the portion of the surface integral involved in this result which is taken over the 
solid part of the slug boundary vanishes identically in virtue of (4.2). 

Now in a first approximation 4 assumes a constant value over the rear face 
of the slug at  station A ,  and over the exterior surface B of the slug, which has 
already emerged from the orifice into an effectively constant pressure region, 
Also, if 1 is a unit outward normal to the bounding surface of the slug and d X  
is a surface element, then 

(4.9) 

since the expression in square brackets is a harmonic function of y. But this 
also implies that each of these integrals can be replaced by an analogous integral 
over a cross-section of the duct lying far upstream of the orifice, and where 

Thus the integral on the left of (4.9) is precisely equal to - d c s / c o ,  and (4.8) 
aK/ay, + 0 and a F p y  -+ (cs/co, 0,o). 

becomes 

As before, the leading approximation to this expression is 

(4.10) 

(4.11) 

where po is the density of the ambient jet flow and p is the density of the slug. 
Actually this formula is valid before the slug emerges from the orifice, provided 

that pB is taken as the local mean flow pressure a t  the front face of the slug. 
After emergence pB may be assumed to equal the constant free-space pressure. 

A similar calculation reveals that the monopole contribution $m is O(Mo) 
smaller than (4.11)) so that the leading approximation to the acoustic pressure 
field radiated into free space is given by 

(4.12) 

Thus pressure waves are generated provided that either p ,  or p ,  is variable. 
Note that (4.12) is similar in form to the analogous result (3.5), in which the 
source of the radiation is a contraction in the duct far upstream of the nozzle 
orifice. 

It is clear that, when the length of the slug exceeds the scale L of the nozzle, 
the sound radiation consists of two equal pulses of opposite sign. The radiation 
actually commences when the leading face of the slug enters the region of 
variable mean flow close to the orifice. I n  this phase p A  is constant and 

evaluated a t  the retarded position of the leading face, giving 

(4.13) 
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In  the second phase the time history of the radiation is identical in form with 
(4.13) but opposite in sign, and occurs when the rear face enters the region of 
variable mean flow. Thus in both phases the pressure perturbation varies as 
(p - p,) M, U2,  and it will be recognized that we have here precisely the interaction 
radiation mechanism of (1.4). 

In  3 2 we also considered the possibility of a significant acoustic contribution 
arising from the differential volumetric expansion of the slug, and concluded 
that it is important only in the case of a highly compressible slug, exemplified 
by an air bubble in a hose, and then only for rather large flow velocities. Using 
the volumetric source term on the right of (2.18) we have in the present case of 
nozzle flow a free-space pressure perturbation whose order of magnitude is 
given by 

(4.14) 

where A is the volume of the slug. As in the duct-flow case treated in $2, this is 
comparable with the dipole radiation (4.13) provided that 

a condition which, as already noted, is unlikely to be satisfied in the case of air 
bubbles exhausting from a domestic hose. 

Note, however, that the pressure fluctuations given by the dipole term (4.13) 
decrease t o  zero as the speed of sound in the jet flow tends to infinity, i.e. when 
the fluid of the jet is incompressible. This is because an incompressible flow 
upstream of the slug responds instantaneously to a variation in the thrust 
without requiring a corresponding variation in the flow velocity, which is 
necessary if sound is to escape from the orifice of the nozzle into free space. 
In  this limiting case the volumetric source term must dominate the radiation 
field. 

In  order to illustrate the magnitudes of the noise levels predicted by the pre- 
sent theory, consider first the case of an air bubble exhausting from a hose 
1.5 cm in diameter having a nozzle contraction scale L of 2.5 em. Assume further 
that the mean flow speed U is typically of order 10 m s-l and that the pressure 
drop across the nozzle is 1 atmos. Then (4.13) predicts a sound pressure level 
of about 80 dB a t  a distance of 1 m from the nozzle. 

As a second example consider the case in which the slug consists of an entropy 
inhomogeneity in a cold air jet. Assume that (p-p,)/p = 0.03, corresponding to 
a 3 % temperature fluctuation in the duct. Take the mean flow Mach number in 
the duct to be 0.35, and suppose that the jet pipe has a diameter of 10 cm 
with a contraction scale L 2: 4 em where the mean pressure decreases by 2 atmos. 
Then it follows from (4.13) that at a distance of 10 nozzle diameters from the 
nozzle the perturbation sound pressure level N 128 dB. 
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5. Conclusion 
This paper has examined the sound generated when a density inhomogeneity 

is convected in a low Mach number steady flow through a contraction in a duct, 
and also when the inhomogeneity exhausts from a nozzle. Two extreme possi- 
bilities have been discussed: the first is that in which the inhomogeneity consists 
of a slug of fluid of different density from the ambient mean flow, and the second 
that of a small spherical pellet. 

The velocity and Mach number dependence of the sound generated by each 
of these models is generally that appropriate to a dipole source. The pellet be- 
haves as a point dipole during the period in which it is slipping through the 
ambient fluid in the region of non-uniform mean flow; the slug gives rise to a 
fluctuation in thrust which is again equivalent to a dipole source. The one excep- 
tion arises in the case of a highly compressible slug convected at high speed in a 
relatively incompressible ambient mean flow. The work done on the ambient 
fluid during the large expansion of the slug as it convects into a region of lower 
ambient pressure is radiated as sound, and is comparable with that due to the 
fluctuation in thrust provided that the mean flow Mach number exceeds the 
square of the ratio of the speed of sound in the slug to that in the ambient flow. 

At a contraction the dipole perturbation pressure levels developed within 
the duct are O(po U 2 ) ,  where po is the density of the mean flow. In the case of a 
slug or a pellet exhausting into free space from a nozzle, the radiation is always 
dominated at low Mach numbers by that due to the fluctuation in thrust, and 
is proportional to ps U3/co, where ps and co are respectively the density in free 
space and the speed of sound in the jet flow. 

This paper documents a study conducted as part of the Rolls Royce (1971) 
Ltd research programme on high-speed jet noise. 

Appendix. Low frequency approximation to the duct Green’s function 
To determine the solution of (2.3) appropriate to low frequency source distri- 

butions, we first consider the equation 

~ ~ - ~ ( a / a t  + U . a / a ~ ) ~  0 - V 2 0  = eciWt8(x - y), (A 1) 

in which it is assumed that the source point y is located in the region of the 
duct contraction of figure 1. The analysis is facilitated by consideration of the 
reciprocal problem 

c;2(a/at - U.  a/ax)z@ - V2G = e-iot&(x - z), (A 2 )  

in which the irrotational convection velocity U is reversed a t  all points of the 
mean flow, and the source point Z is now located far downstream of the contrac- 
tion. Then by a reverse-flow reciprocal theorem established in Howe (1975), 

o(n) = G(y). (A 3) 

Now for sufficiently small values of the radian frequency o, the disturbance 
generated by the point source in (A 2) will have developed into a plane propagating 
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incident wave on reaching the duct contraction. The potential of this incident 
wave in the reciprocal problem is given by 

At the contraction a reflected wave 8, and a transmitted wave 8, are 
generated. Far from the contraction these have the following respective func- 

In  the approximation in which terms of order (WL/C, )~  and higher are neg- 
lected in the low frequency expansion of the Green’s function, the flow in the 
vicinity of the contraction is incompressible, and the potential there is given by 

t3 = X o V )  +Xl(t) $*(x), (A 6) 

where the second term on the right is O(wL/co) relative to the first. The function 
$*(x) is harmonic and describes steady irrotational flow through the contraction. 
It is normalized such that 

where K is the ‘conductivity’ of the Contraction. 

expansion of the acoustic wave field for small retarded times xl/co(l 
and this implies that 

These asymptotic expressions must match the corresponding terms in the 

(A 8) 
X o ( Q  = @ A t )  +B, ( t ) ,  

X o P )  - ( A m  XlP)  = W )  
and for M 2  < 1, 

Solving for xo and x1 we ultimately find that in the vicinity of the contraction 

(A 10) 
use having been made of (A 4). 
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By the reverse-flow theorem embodied in (A 3) this is also the potential 
@ ( Z , t )  a t  Z due to a harmonic point source located at x. The corresponding 
approximation to the Green's function G(x, y; t ,  7) generated by a source 

d(x-y)d(t-7) 

located a t  y in the original problem of (2.3) is obtained by replacing x by y, and 
Z by x. in (A lo), multiplying by (2n)-lexp (im) and integrating over all o, the 
causality condition being satisfied by indenting the path of integration to pass 
above the singularity at w = 0. Noting that a t  the observation point 

we immediately obtain the result (2.4). 
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